Copyright 2011 Todd A. Kukla KANT’S THEORY OF COGNITION: AN INTERPRETATION OF THE ARGUMENT OF THE TRANSCEDENTAL DEDUCTION BY TODD

نویسندگان

  • ANTHONY KUKLA
  • Arthur Melnick
  • Richard Schacht
  • Shelley Weinberg
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Infeasible Interior-Point Algorithm with Full Nesterov-Todd Step for Semi-Definite Optimization

  We present a new full Nesterov and Todd step infeasible interior-point algorithm for semi-definite optimization. The algorithm decreases the duality gap and the feasibility residuals at the same rate. In the algorithm, we construct strictly feasible iterates for a sequence of perturbations of the given problem and its dual problem. Every main iteration of the algorithm consists of a feasibili...

متن کامل

A full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem

‎A full Nesterov-Todd (NT) step infeasible interior-point algorithm‎ ‎is proposed for solving monotone linear complementarity problems‎ ‎over symmetric cones by using Euclidean Jordan algebra‎. ‎Two types of‎ ‎full NT-steps are used‎, ‎feasibility steps and centering steps‎. ‎The‎ ‎algorithm starts from strictly feasible iterates of a perturbed‎ ‎problem‎, ‎and, using the central path and feasi...

متن کامل

Kant’s Subjective Deduction

In the transcendental deduction, the central argument of the Critique of Pure Reason, Kant seeks to secure the objective validity of our basic categories of thought. He distinguishes objective and subjective sides of this argument. The latter side, the subjective deduction, is normally understood as an investigation of our cognit ive faculties. It is identified with Kant’s account of a threefol...

متن کامل

A full Nesterov-Todd step interior-point method for circular cone optimization

In this paper, we present a full Newton step feasible interior-pointmethod for circular cone optimization by using Euclidean Jordanalgebra. The search direction is based on the Nesterov-Todd scalingscheme, and only full-Newton step is used at each iteration.Furthermore, we derive the iteration bound that coincides with thecurrently best known iteration bound for small-update methods.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011